
© Volodymyr Sokol

LECTION 9

© Volodymyr Sokol

Introduction to Database Replication

• Functionality of DDBMS is attractive. However,

implementations of required protocols and algorithms

are complex and can cause problems that may

outweigh advantages.

• Alternative and more simplify approach to data

distribution is provided by a replication server.

• Every major database vendor has replication

solution.

© Volodymyr Sokol

Introduction to Database Replication

• Database Replication is the process of copying and

maintaining database objects, such as relations, in

multiple databases that make up a distributed

database system.

© Volodymyr Sokol

Introduction to Database Replication

• Replication can be described using the publishing

industry metaphor:
– Publisher: a DBMS that makes data available to other

locations through replication.

– Distributor: a DBMS that stores replication data and

metadata about the publication and in some cases acts as a

queue for data moving from the publisher to the

subscribers.

– Subscriber: a DBMS that receives replicated data. A

subscriber can receive data from multiple publishers and

publications.

© Volodymyr Sokol

Introduction to Database Replication

• Replication has similar advantages to DDBMS:
– Reliability and availability

– Improved performance

– Supports disconnected computing model.

© Volodymyr Sokol

Applications of Replication

• Replication supports a variety of applications that

have very different requirements.

• Some applications are supported with only limited

synchronization between the copies of the database

and the central database system.

• Other applications demand continuous

synchronization between all copies of the database.

© Volodymyr Sokol

Replication Model

© Volodymyr Sokol

Replication Model

• Replicated database system consists of several

databases, called replicas or copies.

• As each site is also a backup site and backups are

sometimes used interchangeably, a backup can also

be used in combination with recovery aspects.

© Volodymyr Sokol

Replication Model

• Formally, replicated database consists of a set of n

sites S = {S1, S2, …, Sn), where n >= 2.

• A site hosts a set of copies of data items x1, x2, x3,

…; we assume for the remainder of this presentation

that each site is a complete copy of the database.

© Volodymyr Sokol

Replication Model

• To distinguish between physical copies and the
logical data item itself, a copy is denoted with the site
identifier; eg. a copy of data item x at site S1 is
denoted as x1.

• Since many transactions might concurrently update
copies at different sites, need a criterion (1CSR) to
determine whether concurrent execution of
transactions accessing copies at different sites is
correct.
– A replicated data history is one-copy serializable if it is

equivalent to a serial one-copy history.

© Volodymyr Sokol

Functional Model of Replication

Protocols

© Volodymyr Sokol

Functional Model of Replication

Protocols
• Phase 1: A client submits its request to one site, called

the local site.

• Phase 2: Depending on replication scheme, requests are

forwarded to the other sites, called the remote sites.

• Phase 3: The request is processed.

• Phase 4: After all affected sites have processed request,

sites communicate again, eg. to detect inconsistencies,

propagate modifications, aggregate results, form a

quorum or ensure atomicity of distributed transaction by

running a concurrency control protocol, such as 2PC.

• Phase 5: Result is send to the client.

© Volodymyr Sokol

Consistency

• Transaction in a replicated database is an ACID unit

of work, although, different definitions of consistency

exist.

• Strongest form of consistency, 1CSR, degrades

performance of a replicated database.

• It has been suggested that a replicated system can

only choose two out of the properties: consistency,

availability, and partition tolerance (CAP theorem).

© Volodymyr Sokol

Consistency Types

• Strong and Weak Consistency:
– Strong - all copies of a data item have same value at end of

update.

– Weak consistency - values eventually become identical and

there is some time where replicas might have different

values.

• Transaction and Mutual Consistency:
– Mutual - copies converge to the same value

– Transaction - global execution history is 1CSR.

– A system can be mutually consistent but not transactional

consistent, although the opposite is not true.

© Volodymyr Sokol

Consistency Types

• Session Consistency:
– A basic property for each replication technique.

– Guarantees that a client observes its own updates, also

known as read-your-own-writes.

– If clients do not observe their own updates a serious race

condition arises. A race condition is where a transaction

writes data item x on S1 and a subsequent read of x within

the same transaction on site S2 does not reflect the write.

© Volodymyr Sokol

Kernel-Based Replication

© Volodymyr Sokol

Middleware-Based Replication

© Volodymyr Sokol

Middleware-Based Replication

© Volodymyr Sokol

Decentralized Middleware-Based

Replication

© Volodymyr Sokol

Replication Servers Functionality

• Basic function is copy data from one database to

another (synchronously or asynchronously).

• Other functions include:
– Scalability

– Mapping and Transformation

– Object Replication

– Specification of Replication Schema

– Subscription mechanism

– Initialization mechanism

– Easy Administration

© Volodymyr Sokol

Non-Transactional versus Transactional

Update
• Early replication mechanisms were non-

transactional.

• Data was copied without maintaining atomicity of

transaction.

• With transactional-based mechanism, structure of

original transaction on source database is also

maintained at target site.

© Volodymyr Sokol

Non-Transactional versus Transactional

Update

© Volodymyr Sokol

Synchronous Versus Asynchronous

Replication
• Synchronous – updates to replicated data are part of

enclosing transaction.
– If one or more sites that hold replicas are unavailable

transaction cannot complete.

– Large number of messages required to coordinate

synchronization.

• Asynchronous - target database updated after

source database modified. Delay in regaining

consistency may range from few seconds to several

hours or even days.

© Volodymyr Sokol

Data Ownership

• Ownership relates to which site has privilege to

update the data.

• Main types of ownership are:
– Primary and secondary copy (or master/slave),

– Workflow,

– Update-anywhere (or peer-to-peer or symmetric replication).

© Volodymyr Sokol

Primary Copy Ownership

• Asynchronously replicated data is owned by one

(master) site, and can be updated by only that site.

• Using ‘publish-and-subscribe’ metaphor, master site

makes data available.

• Other sites ‘subscribe’ to data owned by master site,

receiving read-only copies.

• Potentially, each site can be master site for non-

overlapping data sets, but update conflicts cannot

occur.

© Volodymyr Sokol

Primary Copy Ownership – Data

Dissemination

© Volodymyr Sokol

Primary Copy Ownership – Data

Consolidation

© Volodymyr Sokol

Update-Anywhere Ownership

• Creates peer-to-peer environment where multiple

sites have equal rights to update replicated data.

• Allows local sites to function autonomously, even

when other sites are not available.

• Shared ownership can lead to conflict scenarios and

have to employ methodology for conflict detection

and resolution.

© Volodymyr Sokol

Update-Anywhere Ownership

© Volodymyr Sokol

Workflow Ownership

• Avoids update conflicts, while providing more

dynamic ownership model.

• Allows right to update replicated data to move from

site to site.

• However, at any one moment, only ever one site that

may update that particular data set.

• Example is order processing system, which follows

series of steps, such as order entry, credit approval,

invoicing, shipping, and so on.

© Volodymyr Sokol

Workflow Ownership

© Volodymyr Sokol

Termination Protocols

• Voting:
– As in DDB, a voting protocol (eg. 2PC) ensures atomicity of

a transaction executed across sites.
– Voting also affects fault tolerance of the system; eg. if T1

updates data item x on S1 and the installation of this update
at S2 is not confirmed by a vote protocol, there is no
guarantee that other sites have been updated as part of this
transaction and if S1 fails, the update of T1 is lost.

– Execution of remote transactions not within the boundary of
the local transaction is called 1-safe; if local site fails the
update is lost; n-safe - n-1 sites can fail but the update is not
lost.

© Volodymyr Sokol

Termination Protocols

• Nonvoting:
– Some replication techniques avoid voting to reduce

message overhead and increase performance and

scalability.

– However, no voting phase means atomicity of transaction

has to be ensured some other way (no atomicity is not an

option as it violates consistency).

– In an update-anywhere architecture, one solution is to use

group communication protocols, as we discuss shortly.

© Volodymyr Sokol

Replication Schemes

• Discuss 4 combinations of properties: update

propagation and update location (called scheme):
– Eager and primary copy, called eager primary copy;

– Eager and update-anywhere, called eager update

anywhere;

– Lazy and primary copy, called lazy primary copy;

– Lazy and update anywhere, called lazy update anywhere.

© Volodymyr Sokol

Eager Primary Copy

• Updates take place at primary copy only, which

eagerly propagates them to each secondary copy.

• A secondary copy is only allowed to process read-

only transactions and, to ensure atomicity, all sites

run a voting phase.

• The primary site can propagate either:
– update by update

– wait until transaction has executed all operations, extract

write-set, and propagate all modifications in one message to

each secondary copy.

© Volodymyr Sokol

Eager Primary Copy – Update by

Update

© Volodymyr Sokol

Eager Primary Copy – Propagate All

© Volodymyr Sokol

Lazy Primary Copy

• Lazy propagation increases performance at the

primary site by allowing it to unilaterally decide

whether to commit or abort a transaction; ie., primary

site does not have to wait for any secondary sites.

• Since the update propagation is not within the

transaction boundary, response time is shorter than

with eager replication (the higher the network

latency, the bigger is this effect).

© Volodymyr Sokol

Lazy Primary Copy

• To maintain transaction’s execution order, FIFO (first-

in-first-out) message delivery is used.

• A primary site can choose to propagate:
– update by update

– entire write-set.

© Volodymyr Sokol

Lazy Primary Copy – Update by Update

© Volodymyr Sokol

Lazy Primary Copy – Propagate All

© Volodymyr Sokol

Eager Update Anywhere

• Present a ROWA scheme where updates are

processed by some site and are then eagerly

broadcast to all other sites.

• Propagation of updates takes place within the

boundary of local transaction and atomicity is

ensured by a final voting phase.

• Consider a linear interaction only.

© Volodymyr Sokol

Eager Update Anywhere

© Volodymyr Sokol

Lazy Update Anywhere

• ROWA scheme where updates are allowed at any

site but are lazily propagated to remote sites.

• Need a mechanism to detect conflicting updates and

restore data consistency.

• Problem is any site can decide whether to commit or

abort and might have 2 conflicting sites that have

already committed.

© Volodymyr Sokol

Lazy Update Anywhere

• In a lazy primary copy scheme can remove a

secondary site that does not accept an update.

• This is not possible here, because every site is a

primary site and due to the laziness, any site might

have locally committed, but conflicting transactions,

not propagated yet.

• To resolve conflicts, mechanisms to detect and

resolve conflicts are key to make this scheme

feasible.

© Volodymyr Sokol

Conflict Detection and Resolution

• Some of most common mechanisms are:
– Earliest and latest timestamps.

– Site Priority.

– Additive and average updates.

– Minimum and maximum values.

– User-defined.

– Hold for manual resolution.

Pearson Education © 2015 46

