
© Volodymyr Sokol

Distributed Database Systems and

Data Warehouses

Dr. Volodymyr Sokol

(vlad.sokol@gmail.com)

© Volodymyr Sokol

LECTION 8

© Volodymyr Sokol

Types of Transactions

• Remote SQL statements: Remote query selects data
from one or more remote tables, all of which reside
at same remote node. Remote update modifies data
in one or more tables, all of which are located at
same remote node .

• Distributed SQL statements: Distributed query
retrieves data from two or more nodes. Distributed
update modifies data on two or more nodes.

• Remote transactions: Contains one or more remote
statements, all of which reference a single remote
node.

© Volodymyr Sokol

Types of Transactions

• Distributed transactions: Includes one or more
statements that, individually or as a group, update
data on two or more distinct nodes of a distributed
database. Oracle ensures integrity of distributed
transactions using 2PC.

© Volodymyr Sokol

Referential Integrity

• Oracle does not permit declarative referential
integrity constraints to be defined across databases.

• However, parent-child table relationships across
databases can be maintained using triggers.

© Volodymyr Sokol

Introduction to Database Replication

• Functionality of DDBMS is attractive. However,

implementations of required protocols and algorithms

are complex and can cause problems that may

outweigh advantages.

• Alternative and more simplify approach to data

distribution is provided by a replication server.

• Every major database vendor has replication

solution.

© Volodymyr Sokol

Introduction to Database Replication

• Database Replication is the process of copying and

maintaining database objects, such as relations, in

multiple databases that make up a distributed

database system.

© Volodymyr Sokol

Introduction to Database Replication

• Replication can be described using the publishing

industry metaphor:
– Publisher: a DBMS that makes data available to other

locations through replication.

– Distributor: a DBMS that stores replication data and

metadata about the publication and in some cases acts as a

queue for data moving from the publisher to the

subscribers.

– Subscriber: a DBMS that receives replicated data. A

subscriber can receive data from multiple publishers and

publications.

© Volodymyr Sokol

Introduction to Database Replication

• Replication has similar advantages to DDBMS:
– Reliability and availability

– Improved performance

– Supports disconnected computing model.

© Volodymyr Sokol

Applications of Replication

• Replication supports a variety of applications that

have very different requirements.

• Some applications are supported with only limited

synchronization between the copies of the database

and the central database system.

• Other applications demand continuous

synchronization between all copies of the database.

© Volodymyr Sokol

Replication Model

© Volodymyr Sokol

Replication Model

• Replicated database system consists of several

databases, called replicas or copies.

• As each site is also a backup site and backups are

sometimes used interchangeably, a backup can also

be used in combination with recovery aspects.

© Volodymyr Sokol

Replication Model

• Formally, replicated database consists of a set of n

sites S = {S1, S2, …, Sn), where n >= 2.

• A site hosts a set of copies of data items x1, x2, x3,

…; we assume for the remainder of this presentation

that each site is a complete copy of the database.

© Volodymyr Sokol

Replication Model

• To distinguish between physical copies and the
logical data item itself, a copy is denoted with the site
identifier; eg. a copy of data item x at site S1 is
denoted as x1.

• Since many transactions might concurrently update
copies at different sites, need a criterion (1CSR) to
determine whether concurrent execution of
transactions accessing copies at different sites is
correct.
– A replicated data history is one-copy serializable if it is

equivalent to a serial one-copy history.

© Volodymyr Sokol

Functional Model of Replication

Protocols

© Volodymyr Sokol

Functional Model of Replication

Protocols
• Phase 1: A client submits its request to one site, called

the local site.

• Phase 2: Depending on replication scheme, requests are

forwarded to the other sites, called the remote sites.

• Phase 3: The request is processed.

• Phase 4: After all affected sites have processed request,

sites communicate again, eg. to detect inconsistencies,

propagate modifications, aggregate results, form a

quorum or ensure atomicity of distributed transaction by

running a concurrency control protocol, such as 2PC.

• Phase 5: Result is send to the client.

© Volodymyr Sokol

Consistency

• Transaction in a replicated database is an ACID unit

of work, although, different definitions of consistency

exist.

• Strongest form of consistency, 1CSR, degrades

performance of a replicated database.

• It has been suggested that a replicated system can

only choose two out of the properties: consistency,

availability, and partition tolerance (CAP theorem).

© Volodymyr Sokol

Consistency Types

• Strong and Weak Consistency:
– Strong - all copies of a data item have same value at end of

update.

– Weak consistency - values eventually become identical and

there is some time where replicas might have different

values.

• Transaction and Mutual Consistency:
– Mutual - copies converge to the same value

– Transaction - global execution history is 1CSR.

– A system can be mutually consistent but not transactional

consistent, although the opposite is not true.

© Volodymyr Sokol

Consistency Types

• Session Consistency:
– A basic property for each replication technique.

– Guarantees that a client observes its own updates, also

known as read-your-own-writes.

– If clients do not observe their own updates a serious race

condition arises. A race condition is where a transaction

writes data item x on S1 and a subsequent read of x within

the same transaction on site S2 does not reflect the write.

© Volodymyr Sokol

Kernel-Based Replication

© Volodymyr Sokol

Middleware-Based Replication

© Volodymyr Sokol

Middleware-Based Replication

© Volodymyr Sokol

Decentralized Middleware-Based

Replication

© Volodymyr Sokol

Replication Servers Functionality

• Basic function is copy data from one database to

another (synchronously or asynchronously).

• Other functions include:
– Scalability

– Mapping and Transformation

– Object Replication

– Specification of Replication Schema

– Subscription mechanism

– Initialization mechanism

– Easy Administration

© Volodymyr Sokol

Non-Transactional versus Transactional

Update
• Early replication mechanisms were non-

transactional.

• Data was copied without maintaining atomicity of

transaction.

• With transactional-based mechanism, structure of

original transaction on source database is also

maintained at target site.

© Volodymyr Sokol

Non-Transactional versus Transactional

Update

© Volodymyr Sokol

Synchronous Versus Asynchronous

Replication
• Synchronous – updates to replicated data are part of

enclosing transaction.
– If one or more sites that hold replicas are unavailable

transaction cannot complete.

– Large number of messages required to coordinate

synchronization.

• Asynchronous - target database updated after

source database modified. Delay in regaining

consistency may range from few seconds to several

hours or even days.

© Volodymyr Sokol

Data Ownership

• Ownership relates to which site has privilege to

update the data.

• Main types of ownership are:
– Primary and secondary copy (or master/slave),

– Workflow,

– Update-anywhere (or peer-to-peer or symmetric replication).

© Volodymyr Sokol

Primary Copy Ownership

• Asynchronously replicated data is owned by one

(master) site, and can be updated by only that site.

• Using ‘publish-and-subscribe’ metaphor, master site

makes data available.

• Other sites ‘subscribe’ to data owned by master site,

receiving read-only copies.

• Potentially, each site can be master site for non-

overlapping data sets, but update conflicts cannot

occur.

© Volodymyr Sokol

Primary Copy Ownership – Data

Dissemination

© Volodymyr Sokol

Primary Copy Ownership – Data

Consolidation

© Volodymyr Sokol

Update-Anywhere Ownership

• Creates peer-to-peer environment where multiple

sites have equal rights to update replicated data.

• Allows local sites to function autonomously, even

when other sites are not available.

• Shared ownership can lead to conflict scenarios and

have to employ methodology for conflict detection

and resolution.

© Volodymyr Sokol

Update-Anywhere Ownership

© Volodymyr Sokol

Workflow Ownership

• Avoids update conflicts, while providing more

dynamic ownership model.

• Allows right to update replicated data to move from

site to site.

• However, at any one moment, only ever one site that

may update that particular data set.

• Example is order processing system, which follows

series of steps, such as order entry, credit approval,

invoicing, shipping, and so on.

© Volodymyr Sokol

Workflow Ownership

© Volodymyr Sokol

Termination Protocols

• Voting:
– As in DDB, a voting protocol (eg. 2PC) ensures atomicity of

a transaction executed across sites.
– Voting also affects fault tolerance of the system; eg. if T1

updates data item x on S1 and the installation of this update
at S2 is not confirmed by a vote protocol, there is no
guarantee that other sites have been updated as part of this
transaction and if S1 fails, the update of T1 is lost.

– Execution of remote transactions not within the boundary of
the local transaction is called 1-safe; if local site fails the
update is lost; n-safe - n-1 sites can fail but the update is not
lost.

© Volodymyr Sokol

Termination Protocols

• Nonvoting:
– Some replication techniques avoid voting to reduce

message overhead and increase performance and

scalability.

– However, no voting phase means atomicity of transaction

has to be ensured some other way (no atomicity is not an

option as it violates consistency).

– In an update-anywhere architecture, one solution is to use

group communication protocols, as we discuss shortly.

© Volodymyr Sokol

Replication Schemes

• Discuss 4 combinations of properties: update

propagation and update location (called scheme):
– Eager and primary copy, called eager primary copy;

– Eager and update-anywhere, called eager update

anywhere;

– Lazy and primary copy, called lazy primary copy;

– Lazy and update anywhere, called lazy update anywhere.

© Volodymyr Sokol

Eager Primary Copy

• Updates take place at primary copy only, which

eagerly propagates them to each secondary copy.

• A secondary copy is only allowed to process read-

only transactions and, to ensure atomicity, all sites

run a voting phase.

• The primary site can propagate either:
– update by update

– wait until transaction has executed all operations, extract

write-set, and propagate all modifications in one message to

each secondary copy.

© Volodymyr Sokol

Eager Primary Copy – Update by

Update

© Volodymyr Sokol

Eager Primary Copy – Propagate All

© Volodymyr Sokol

Lazy Primary Copy

• Lazy propagation increases performance at the

primary site by allowing it to unilaterally decide

whether to commit or abort a transaction; ie., primary

site does not have to wait for any secondary sites.

• Since the update propagation is not within the

transaction boundary, response time is shorter than

with eager replication (the higher the network

latency, the bigger is this effect).

© Volodymyr Sokol

Lazy Primary Copy

• To maintain transaction’s execution order, FIFO (first-

in-first-out) message delivery is used.

• A primary site can choose to propagate:
– update by update

– entire write-set.

© Volodymyr Sokol

Lazy Primary Copy – Update by Update

© Volodymyr Sokol

Lazy Primary Copy – Propagate All

© Volodymyr Sokol

Eager Update Anywhere

• Present a ROWA scheme where updates are

processed by some site and are then eagerly

broadcast to all other sites.

• Propagation of updates takes place within the

boundary of local transaction and atomicity is

ensured by a final voting phase.

• Consider a linear interaction only.

© Volodymyr Sokol

Eager Update Anywhere

© Volodymyr Sokol

Lazy Update Anywhere

• ROWA scheme where updates are allowed at any

site but are lazily propagated to remote sites.

• Need a mechanism to detect conflicting updates and

restore data consistency.

• Problem is any site can decide whether to commit or

abort and might have 2 conflicting sites that have

already committed.

© Volodymyr Sokol

Lazy Update Anywhere

• In a lazy primary copy scheme can remove a

secondary site that does not accept an update.

• This is not possible here, because every site is a

primary site and due to the laziness, any site might

have locally committed, but conflicting transactions,

not propagated yet.

• To resolve conflicts, mechanisms to detect and

resolve conflicts are key to make this scheme

feasible.

© Volodymyr Sokol

Conflict Detection and Resolution

• Some of most common mechanisms are:
– Earliest and latest timestamps.

– Site Priority.

– Additive and average updates.

– Minimum and maximum values.

– User-defined.

– Hold for manual resolution.

Pearson Education © 2015 50

