
© Volodymyr Sokol

Distributed Database Systems and

Data Warehouses

Dr. Volodymyr Sokol

(vlad.sokol@gmail.com)

© Volodymyr Sokol

LECTION 7

© Volodymyr Sokol

Distributed Query Optimization

© Volodymyr Sokol

Distributed Query Optimization

• Query decomposition: takes query expressed on

global relations and performs partial optimization

using centralized QO techniques. Output is some

form of RAT based on global relations.

• Data localization: takes into account how data has

been distributed. Replace global relations at leaves

of RAT with their reconstruction algorithms.

© Volodymyr Sokol

Distributed Query Optimization

• Global optimization: uses statistical information to

find a near-optimal execution plan. Output is

execution strategy based on fragments with

communication primitives added.

• Local optimization: Each local DBMS performs its

own local optimization using centralized QO

techniques.

© Volodymyr Sokol

Data Localization

• In QP, represent query as R.A.T. and, using

transformation rules, restructure tree into equivalent

form that improves processing.

• In DQP, need to consider data distribution.

• Replace global relations at leaves of tree with their

reconstruction algorithms - RA operations that

reconstruct global relations from fragments:
– For horizontal fragmentation, reconstruction algorithm is

Union;

– For vertical fragmentation, it is Join.

© Volodymyr Sokol

Data Localization

• Then use reduction techniques to generate simpler

and optimized query.

• Consider reduction techniques for following types of

fragmentation:
– Primary horizontal fragmentation.

– Vertical fragmentation.

– Derived fragmentation.

© Volodymyr Sokol

Reduction for Primary Horizontal Fragmentation

• If selection predicate contradicts definition of

fragment, this produces empty intermediate relation

and operations can be eliminated.

• For join, commute join with union.

• Then examine each individual join to determine

whether there are any useless joins that can be

eliminated from result.

• A useless join exists if fragment predicates do not

overlap.

© Volodymyr Sokol

Reduction for PHF

SELECT *

FROM Branch b, PropertyForRent p

WHERE b.branchNo = p.branchNo AND p.type = ‘Flat’;

P1: branchNo=‘B003’  type=‘House’ (PropertyForRent)

P2: branchNo=‘B003’  type=‘Flat’ (PropertyForRent)

P3: branchNo!=‘B003’ (PropertyForRent)

B1: branchNo=‘B003’ (Branch)

B2: branchNo!=‘B003’ (Branch)

© Volodymyr Sokol

Reduction for PHF

© Volodymyr Sokol

Reduction for PHF

© Volodymyr Sokol

Reduction for PHF

© Volodymyr Sokol

Reduction for Vertical Fragmentation

• Reduction for vertical fragmentation involves

removing those vertical fragments that have no

attributes in common with projection attributes,

except the key of the relation.

© Volodymyr Sokol

Reduction for Vertical Fragmentation

SELECT fName, lName

FROM Staff;

S1: staffNo, position, sex, DOB, salary(Staff)

S2: staffNo, fName, lName, branchNo (Staff)

© Volodymyr Sokol

Reduction for Vertical Fragmentation

© Volodymyr Sokol

Reduction for Derived Fragmentation

• Use transformation rule that allows join and union to

be commuted.

• Using knowledge that fragmentation for one relation

is based on the other and, in commuting, some of

the partial joins should be redundant.

© Volodymyr Sokol

Reduction for Derived Fragmentation

SELECT *

FROM Branch b, Client c

WHERE b.branchNo = c.branchNo AND

b.branchNo = ‘B003’;

B1 = branchNo=‘B003’ (Branch)

B2 = branchNo!=‘B003’ (Branch)

Ci = Client branchNo Bi i = 1, 2

© Volodymyr Sokol

Reduction for Derived Fragmentation

© Volodymyr Sokol

Global Optimization

• Objective of this layer is to take the reduced query

plan for the data localization layer and find a near-

optimal execution strategy.

• In distributed environment, speed of network has to

be considered when comparing strategies.

• If know topology is that of WAN, could ignore all

costs other than network costs.

• LAN typically much faster than WAN, but still slower

than disk access.

© Volodymyr Sokol

Global Optimization

• Cost model could be based on total cost (time), as in

centralized DBMS, or response time. Latter uses

parallelism inherent in DDBMS.

© Volodymyr Sokol

Global Optimization – R*

• R* uses a cost model based on total cost and static

query optimization.

• Like centralized System R optimizer, algorithm is

based on an exhaustive search of all join orderings,

join methods (nested loop or sort-merge join), and

various access paths for each relation.

• When Join is required involving relations at different

sites, R* selects the sites to perform Join and

method of transferring data between sites.

© Volodymyr Sokol

Global Optimization – R*

• For a Join of R and S with R at site 1 and S at site 2,

there are three candidate sites:
– site 1, where R is located;

– site 2, where S is located;

– some other site (e.g., site of relation T, which is to be joined

with join of R and S).

© Volodymyr Sokol

Global Optimization – R*

• In R*, there are 2 methods for transferring data:
1. Ship whole relation
2. Fetch tuples as needed.

• First method incurs a larger data transfer but fewer
message then second.

• R* considers only the following methods:
1. Nested loop, ship whole outer relation to site of inner.
2. Sort-merge, ship whole inner relation to site of outer.
3. Nested loop, fetch tuples of inner relation as needed for

each tuple of outer relation.
4. Sort-merge, fetch tuples of inner relation as needed for

each tuple of outer relation.
5. Ship both relations to third site.

© Volodymyr Sokol

Global Optimization – SDD-1

• Based on an earlier method known as “hill climbing”,

a greedy algorithm that starts with an initial feasible

solution that is then iteratively improved.

• Modified to make use of Semijoin to reduce

cardinality of join operands.

• Like R*, SDD-1 optimizer minimizes total cost,

although unlike R* it concentrates on communication

message size.

• Like R*, query processing timing used is static.

© Volodymyr Sokol

Global Optimization – SDD-1

• Based on concept of “beneficial Semijoins”.

• Communication cost of Semijoin is simply cost of

transferring join attribute of first operand to site of

second operand.

• “Benefit” of Semijoin is taken as cost of transferring

irrelevant tuples of first operand, which Semijoin

avoids.

© Volodymyr Sokol

Global Optimization – SDD-1

• Phase 1 – Initialization: Perform all local reductions using

Selection and Projection. Execute Semijoins within same

site to reduce sizes of relations. Generate set of all

beneficial Semijoins across sites (Semijoin is beneficial if

its cost is less than its benefit).

• Phase 2 – Selection of beneficial Semijoins: Iteratively

select most beneficial Semijoin from set generated and

add it to execution strategy. After each iteration, update

database statistics to reflect incorporation of the Semijoin

and update the set with new beneficial Semijoins.

© Volodymyr Sokol

Global Optimization – SDD-1

• Phase 3 – Assembly site selection: Select, among all
sites, site to which transmission of all relations incurs a
minimum cost. Choose site containing largest amount of
data after reduction phase so that sum of the amount of
data transferred from other sites will be minimum.

• Phase 4 – Postoptimization: Discard useless Semijoins;
e.g. if R resides in assembly site and R is due to be
reduced by Semijoin, but is not used to reduce other
relations after Semijoin, then since R need not be moved
to another site during assembly phase, Semijoin on R is
useless and can be discarded.

