
© Volodymyr Sokol

Distributed Database Systems and 

Data Warehouses

Dr. Volodymyr Sokol

(vlad.sokol@gmail.com)



© Volodymyr Sokol

LECTION 5



© Volodymyr Sokol

Distributed Deadlock Management

• Consider three transactions T1, T2, and T3 with:
– T1 initiated at site S1 and creating an agent at site S2
– T2 initiated at site S2 and creating an agent at site S3
– T3 initiated at site S3 and creating an agent at site S1

• The transactions set shared (read) and exclusive (write) locks as 
illustrated below, where read_lock(Ti, xj) denotes a shared lock by 
transaction Ti on data item xj and write_lock(Ti, xj) denotes an exclusive 
lock by transaction Ti on data item xj.

• We can construct the wait-for graphs (WFGs) for each site, and there are 
no cycles in the individual WFGs, which might lead us to believe that 
deadlock does not exist

• However, if we combine the WFGs, we can see that deadlock does exist 
due to the cycle: T1 → T2 → T3 → T1



© Volodymyr Sokol

Distributed Deadlock Management

• There are three common methods for handling 

deadlock detection in DDBMSs
– centralized

– hierarchical

– distributed deadlock detection.



© Volodymyr Sokol

Centralized deadlock detection

• Single site is appointed as the Deadlock Detection 
Coordinator (DDC)

• The DDC has the responsibility of constructing and 
maintaining the global WFG

• Periodically, each lock manager transmits its local WFG 
to the DDC. The DDC builds the global WFG and checks 
for cycles in it

• If one or more cycles exist, the DDC must break each 
cycle by selecting the transactions to be rolled back and 
restarted. The DDC must inform all sites that are 
involved in the processing of these transactions that they 
are to be rolled back and restarted.



© Volodymyr Sokol

Hierarchical deadlock detection

• With hierarchical deadlock detection, the sites in the 

network are organized into a hierarchy.

• Each site sends its local WFG to the deadlock 

detection site above it in the hierarchy



© Volodymyr Sokol

Distributed deadlock detection



© Volodymyr Sokol

Distributed Deadlock Detection

S1: Text  T3  T1  Text

S2: Text  T1  T2  Text

S3: Text  T2  T3  Text

• Transmit LWFG for S1 to the site for which

transaction T1 is waiting, site S2.

• LWFG at S2 is extended and becomes:

S2: Text  T3  T1  T2  Text



© Volodymyr Sokol

Distributed Deadlock Detection

• Still contains potential deadlock, so transmit this

WFG to S3:

S3: Text  T3  T1  T2  T3  Text

• GWFG contains cycle not involving Text, so deadlock

exists.



© Volodymyr Sokol

Distributed Deadlock Detection

• Four types of failure particular to distributed systems:
– Loss of a message.

– Failure of a communication link.

– Failure of a site.

– Network partitioning.

• Assume first are handled transparently by DC

component.



© Volodymyr Sokol

Distributed Recovery Control

• DDBMS is highly dependent on ability of all sites to

be able to communicate reliably with one another.

• Communication failures can result in network

becoming split into two or more partitions.

• May be difficult to distinguish whether

communication link or site has failed.



© Volodymyr Sokol

Partitioning of a network



© Volodymyr Sokol

Two-Phase Commit (2PC)

• Two phases: a voting phase and a decision phase.

• Coordinator asks all participants whether they are

prepared to commit transaction.
– If one participant votes abort, or fails to respond within a

timeout period, coordinator instructs all participants to abort

transaction.

– If all vote commit, coordinator instructs all participants to

commit.

• All participants must adopt global decision.



© Volodymyr Sokol

Two-Phase Commit (2PC)

• If participant votes abort, free to abort transaction

immediately

• If participant votes commit, must wait for coordinator

to broadcast global-commit or global-abort message.

• Protocol assumes each site has its own local log and

can rollback or commit transaction reliably.

• If participant fails to vote, abort is assumed.

• If participant gets no vote instruction from 

coordinator, can abort.



© Volodymyr Sokol

2PC Protocol for Participant Voting Commit



© Volodymyr Sokol

2PC Protocol for Participant Voting Abort



© Volodymyr Sokol

2PC Termination Protocols

• Invoked whenever a coordinator or participant fails to

receive an expected message and times out.

Coordinator

• Timeout in WAITING state
– Globally abort transaction.

• Timeout in DECIDED state
– Send global decision again to sites that have not

acknowledged.



© Volodymyr Sokol

2PC - Termination Protocols (Participant)

• Simplest termination protocol is to leave participant

blocked until communication with the coordinator is

re-established. Alternatively:

• Timeout in INITIAL state
– Unilaterally abort transaction.

• Timeout in the PREPARED state
–Without more information, participant blocked.

–Could get decision from another participant .



© Volodymyr Sokol

State Transition Diagram for 2PC

(a) coordinator; (b) participant



© Volodymyr Sokol

2PC Recovery Protocols

• Action to be taken by operational site in event of

failure. Depends on what stage coordinator or

participant had reached.

Coordinator Failure

• Failure in INITIAL state
– Recovery starts commit procedure.

• Failure in WAITING state
– Recovery restarts commit procedure.



© Volodymyr Sokol

2PC Recovery Protocols (Coordinator Failure)

• Failure in DECIDED state
– On restart, if coordinator has received all

acknowledgements, it can complete successfully.

Otherwise, has to initiate termination protocol discussed

above.



© Volodymyr Sokol

2PC Recovery Protocols (Participant Failure)

• Objective to ensure that participant on restart

performs same action as all other participants and

that this restart can be performed independently.

• Failure in INITIAL state
– Unilaterally abort transaction.

• Failure in PREPARED state
– Recovery via termination protocol above.

• Failure in ABORTED/COMMITTED states
– On restart, no further action is necessary.



© Volodymyr Sokol

2PC Topologies


