
© Volodymyr Sokol

Distributed Database Systems and 

Data Warehouses

Dr. Volodymyr Sokol

(vlad.sokol@gmail.com)



© Volodymyr Sokol

LECTION 2



© Volodymyr Sokol

Data Allocation

• Centralized

• Fragmented (or partitioned)

• Complete replication

• Selective replication



© Volodymyr Sokol

Fragmentation – Why?

• Usage. In general, applications work with views rather than 
entire relations. Therefore, for data distribution, it seems 
appropriate to work with subsets of relations as the unit of 
distribution

• Efficiency. Data is stored close to where it is most frequently 
used. In addition, data that is not needed by local applications 
is not stored

• Parallelism. With fragments as the unit of distribution, a 
transaction can be divided into several subqueries that 
operate on fragments. This should increase the degree of 
concurrency, or parallelism, in the system thereby allowing 
transactions that can do so safely to execute in parallel

• Security. Data not required by local applications is not stored 
and consequently not available to unauthorized users



© Volodymyr Sokol

Fragmentation - Disadvantages

• Performance. The performance of global 

applications that require data from several fragments 

located at different sites may be slower

• Integrity. Integrity control may be more difficult if 

data and functional dependencies are fragmented 

and located at different sites



© Volodymyr Sokol

Correctness of fragmentation

There are three rules that must be followed during fragmentation:
• Completeness. If a relation instance R is decomposed into 

fragments R1, R2, . . . , Rn, each data item that can be found in R 
must appear in at least one fragment. This rule is necessary to 
ensure that there is no loss of data during fragmentation

• Reconstruction. It must be possible to define a relational operation 
that will reconstruct the relation R from the fragments. This rule 
ensures that functional dependencies are preserved

• Disjointness. If a data item di appears in fragment Ri, then it 
should not appear in any other fragment. Vertical fragmentation is 
the exception to this rule, where primary key attributes must be 
repeated to allow reconstruction. This rule ensures minimal data 
redundancy



© Volodymyr Sokol

Types of fragmentation

• Horizontal - consists of a subset of the tuples of a 

relation

• Vertical - consists of a subset of the attributes of a 

relation

• No Fragmenatation



© Volodymyr Sokol

Horizontal fragmentation

• Horizontal fragmentation groups together the tuples 

in a relation that are collectively used by the

important transactions

• A horizontal fragment is produced by specifying a 

predicate that performs a restriction on the tuples in 

the relation



© Volodymyr Sokol

Horizontal fragmentation



© Volodymyr Sokol

Horizontal fragmentation

• Completeness Each tuple in the relation appears in 

either fragment P1 or P2

• Reconstruction The PropertyForRent relation can be 

reconstructed from the fragments using the Union 

operation, thus:

P1 ∪ P2 = PropertyForRent

• Disjointness The fragments are disjoint; there can be 

no property type that is both ‘House’ and ‘Flat’



© Volodymyr Sokol

Vertical fragmentation

• Vertical fragmentation groups together the attributes in a 

relation that are used jointly by the important transactions

• Completeness Each attribute in the Staff relation appears 

in either fragment S1 or S2.

• Reconstruction The Staff relation can be reconstructed 

from the fragments using the Natural join operation, thus:

S1 ⋈ S2 = Staff

• Disjointness The fragments are disjoint except for the 

primary key, which is necessary for reconstruction



© Volodymyr Sokol

Mixed fragmentation

• Mixed fragment - consists of a horizontal fragment 

that is subsequently vertically fragmented, or a 

vertical fragment that is then horizontally fragmented



© Volodymyr Sokol

Derived horizontal fragmentation

• Some applications may involve a join of two or more 

relations. If the relations are stored at different 

locations, there may be a significant overhead in 

processing the join. In such cases, it may be more 

appropriate to ensure that the relations, or fragments 

of relations, are at the same location. We can 

achieve this using derived horizontal fragmentation

• Derived fragment - is a horizontal fragment that is 

based on the horizontal fragmentation of a parent

relation



© Volodymyr Sokol

Transparencies in a DDBMS

Four main types of transparency in a DDBMS:

• distribution transparency

• transaction transparency

• performance transparency

• DBMS transparency



© Volodymyr Sokol

Distribution Transparency

• Distribution transparency allows the user to perceive 

the database as a single, logical entity

• If a DDBMS exhibits distribution transparency, then 

the user does not need to know the data is 

fragmented (fragmentation transparency) or the 

location of data items (location transparency)



© Volodymyr Sokol

Distribution Transparency

• Fragmentation transparency (highest level) - user 
does not need to know that the data is fragmented

• Location transparency (middle level) - user must 
know how the data has been fragmented but still 
does not have to know the location of the data

• Replication transparency means that user is 
unaware of the replication of fragments

• Local mapping transparency (lowest level) - the 
user needs to specify both fragment names and the 
location of data items, taking into consideration any 
replication that may exist



© Volodymyr Sokol

Naming transparency

• As in a centralized database, each item in a distributed 
database must have a unique name. One solution to this 
problem is to create a central name server, which has the 
responsibility for ensuring uniqueness of all names in the 
system. However, this approach results in:
– loss of some local autonomy
– performance problems, if the central site becomes a bottleneck
– low availability; if the central site fails, the remaining sites cannot create 

any new database objects
• An alternative solution is to prefix an object with the identifier 

of the site that created it. However, this results in loss of 
distribution transparency.

• An approach that resolves the problems with both these 
solutions uses aliases (sometimes called synonyms) for 
each database object



© Volodymyr Sokol

Transaction Transparency

• Transaction transparency in a DDBMS environment 
ensures that all distributed transactions maintain the 
distributed database’s integrity and consistency. A 
distributed transaction accesses data stored at more 
than one location. Each transaction is divided into a 
number of subtransactions, one for each site that has 
to be accessed; a subtransaction is represented by an 
agent

• We consider two further aspects of transaction 
transparency:
– concurrency transparency
– failure transparency



© Volodymyr Sokol

Concurrency transparency

• Concurrency transparency is provided by the 

DDBMS if the results of all concurrent transactions 

(distributed and non-distributed) execute 

independently and are logically consistent with the 

results that are obtained if the transactions are 

executed one at a time, in some arbitrary serial order



© Volodymyr Sokol

Failure transparency

In the distributed environment, the DDBMS must also 

cater for:

• loss of a message

• failure of a communication link

• failure of a site

• network partitioning



© Volodymyr Sokol

Classification of transactions

Distributed Relational DatabaseArchitecture (DRDA) 

defines four types of transaction (progressive level of 

complexity):

• remote request

• remote unit of work

• distributed unit of work

• distributed request



© Volodymyr Sokol

Classification of transactions

• Remote request. An application at one site can send a 

request (SQL statement) to some remote site for 

execution. The request is executed entirely at the remote 

site and can reference data only at the remote site

• Remote unit of work. An application at one (local) site 

can send all the SQL statements in a unit of work 

(transaction) to some remote site for execution. All SQL 

statements are executed entirely at the remote site and 

can only reference data at the remote site. However, the 

local site decides whether the transaction is to be 

committed or rolled back



© Volodymyr Sokol

Classification of transactions

• Distributed unit of work. An application at one (local) site 
can send some of or all the SQL statements in a transaction 
to one or more remote sites for execution. Each SQL 
statement is executed entirely at the remote site and can only 
reference data at the remote site. However, different SQL 
statements can be executed at different sites. Again, the local 
site decides whether the transaction is to be committed or 
rolled back

• Distributed request. An application at one (local) site can 
send some of or all the SQL statements in a transaction to 
one or more remote sites for execution. However, an SQL 
statement may require access to data from more than one 
site (for example, the SQL statement may need to join or 
union relations/fragments located at different sites)



© Volodymyr Sokol

Performance Transparency

• Performance transparency requires a DDBMS to 

perform as if it were a centralized DBMS. Distributed 

query processor (DQP) maps a data request into an 

ordered sequence of operations on the local 

databases. It has to decide:
– which fragment to access

– which copy of a fragment to use, if the fragment is replicated

– which location to use


